# **Used Water Management Approach under SBM 2.0**

#### **WASTEWATER TREATMENT**

Why Treat-- Public Health

How to Treat-- **Engineering** 

What to Treat- (and not treat)
-Management Approach

- Need
- Funds
- Priorities



Central Public Health and Environmental Engineering Organisation (CPHEEO)

www.swachhbharaturban.gov.in

**June 2025** 



# MOST PROBABLE NUMBER





## **Criteria Pollutants in Urban Domestic Wastewater**

# Impurities- Various (mg/l)

**CONHSP, Trace, Total Solids** 

**Impact-** Colour, Odour, Taste, Toxicity

**BOD** as indicator of Organic Impurities

□Domestic Sewage- 300 mg/l

☐Septage- 2000 mg/l

☐Sludge- 18000 mg/l\*

☐Black Water- 500 mg/l

☐Grey Water- 260 mg/l

Person releases 30-36 gms BOD per day Diluted and transferred through 70-135

litres of water Say 33 gms/100 litres= 330 mg/litre

# Pathogens (MPN)

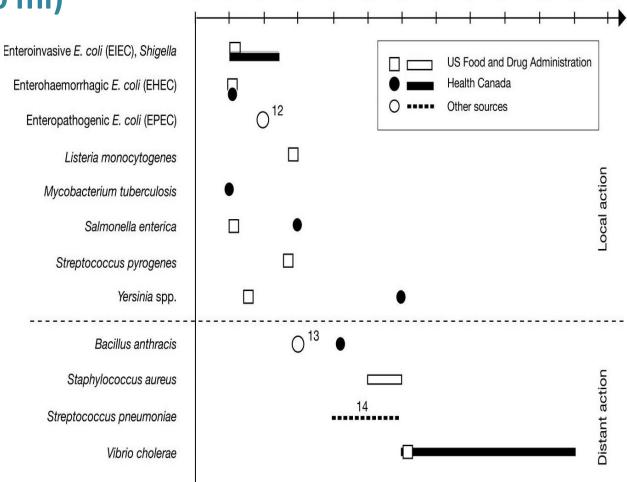
Variable Types & Concentrations Escherichia Coliform (E-Coli) as indicator

**Impact- Disease, Death** 

Jaundice, Typhoid, Cholera, Dysentery

**Density of Coliforms in DomesticSewage** 

□10<sup>7</sup> per 100 ml

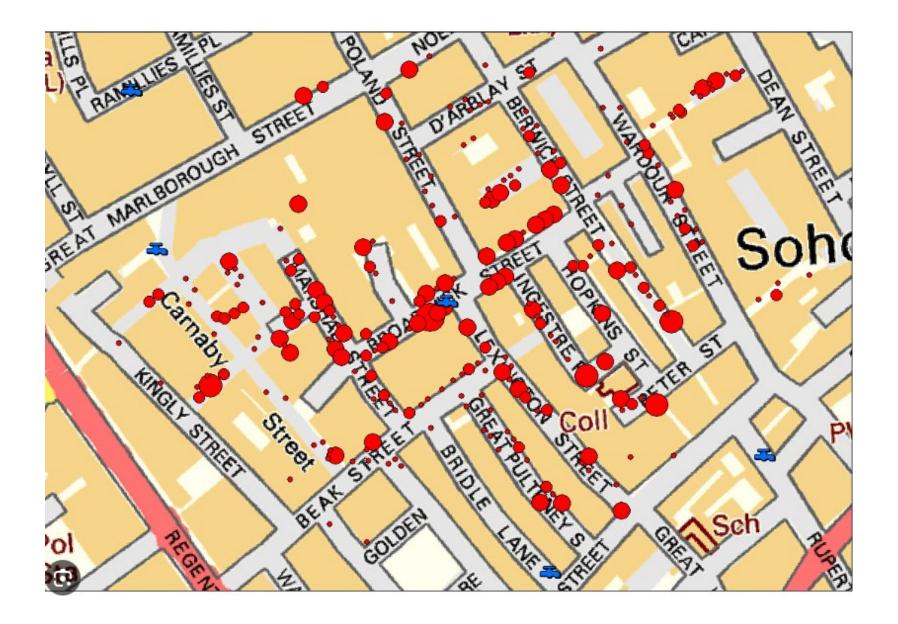

 $\Box$ 100 ml= 10<sup>5</sup> mm<sup>3</sup>

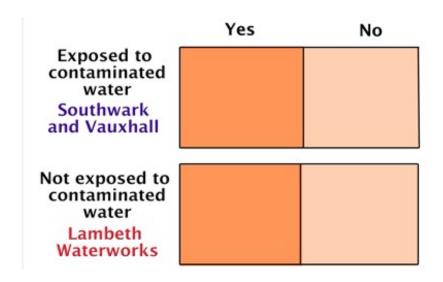
Thus 100 E-Coli per cubic millimetre



# Concentrations of microorganisms in domestic wastewater (number per 100 ml) 0 1 2

| Micro organisms               | High             | Low                    |  |  |  |
|-------------------------------|------------------|------------------------|--|--|--|
| E. coli                       | 5.108            | <b>10</b> <sup>6</sup> |  |  |  |
| Total Coliforms               | 10 <sup>13</sup> | 1011                   |  |  |  |
| Salmonella (B)                | 300              | 50                     |  |  |  |
| Giardia (P)                   | 10 <sup>3</sup>  | 10 <sup>2</sup>        |  |  |  |
| Rotavirus                     | 100              | 20                     |  |  |  |
| Enterovirus                   | 10 <sup>4</sup>  | 10 <sup>3</sup>        |  |  |  |
| Roundworms (H)                | 20               | 5                      |  |  |  |
| (Henze et al., 2001 (UN-IHE)) |                  |                        |  |  |  |





10 log (Dose)

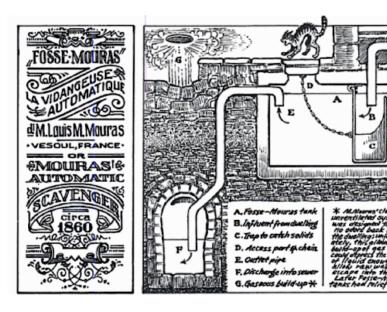
# Pathogens in Wastewater- Concentration and Survival

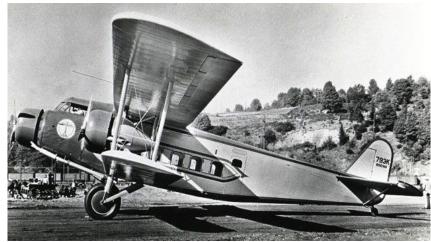
|           | Types of Pathogen                       | Possible Conc per litre | Survival Time of Excreted Pathogens in Days (Typical Value) |                            |                    |  |  |  |  |  |  |
|-----------|-----------------------------------------|-------------------------|-------------------------------------------------------------|----------------------------|--------------------|--|--|--|--|--|--|
|           | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | in Municipal            | In faeces and sludge                                        | In sewage, septage, Fresh/ | In the soil        |  |  |  |  |  |  |
|           |                                         | Wastewater <sup>@</sup> |                                                             | ground water               |                    |  |  |  |  |  |  |
| Viruses   | Enterovirus#                            | 5000                    | <100 (<20)                                                  | <120 (<50)                 | <100 (<20)         |  |  |  |  |  |  |
| Bacteria  | Pathogenic E Coli <sup>\$</sup>         | ?                       | <90 (<50)                                                   | <60 (<30)                  | <70 (<20)          |  |  |  |  |  |  |
|           | Salmonella spp                          | 7000                    | <60 (<30)                                                   | <60 (<30)                  | <70 (<20)          |  |  |  |  |  |  |
|           | Shiegella spp                           | 7000                    | <30 (<10)                                                   | <30 (<10)                  | -                  |  |  |  |  |  |  |
|           | Vibrio cholorae                         | 1000                    | <30 (<5)                                                    | <30 (<10)                  | <20 (<10)          |  |  |  |  |  |  |
| Protozoa  | Entamoeba histolytica                   | 4500                    | <30 (<15)                                                   | <30 (<15)                  | <20 (<10)          |  |  |  |  |  |  |
| Helminths | Ascartis Lumbricoides                   | 600                     | Many Months                                                 | Many Months                | Many Months        |  |  |  |  |  |  |
|           | Hookworms**                             | 32                      |                                                             |                            |                    |  |  |  |  |  |  |
|           | Schistosoma mansoni                     | 1                       |                                                             |                            |                    |  |  |  |  |  |  |
|           | Taenia saginata                         | 10                      |                                                             | Source- FAO (Fa            | echem et al, 1983) |  |  |  |  |  |  |
|           | Trichuris trichiura                     | 120                     |                                                             |                            |                    |  |  |  |  |  |  |

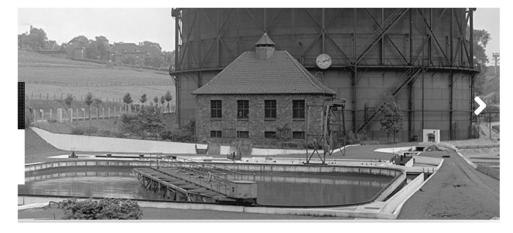
- ? Uncertain
- @ Based on 100 lpcd of municipal sewage
- # Includes polio- echo- and coxsackie viruses
- % Includes enterotoxigenic, enteroinvasive and enteropathogenic E Coli
- \*\* Anglostoma duedenale & Necator americanus
- ( ) Shows the usual survival time



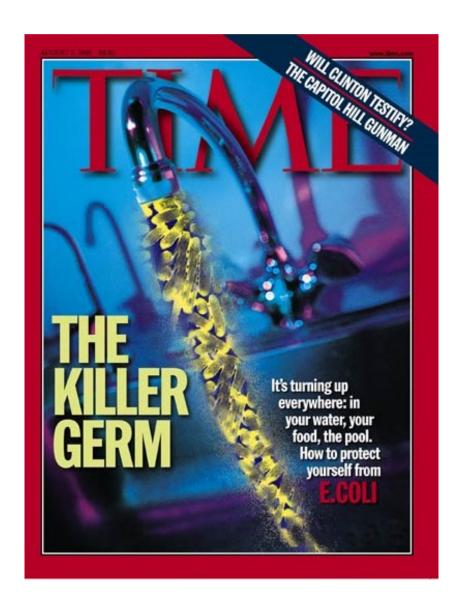


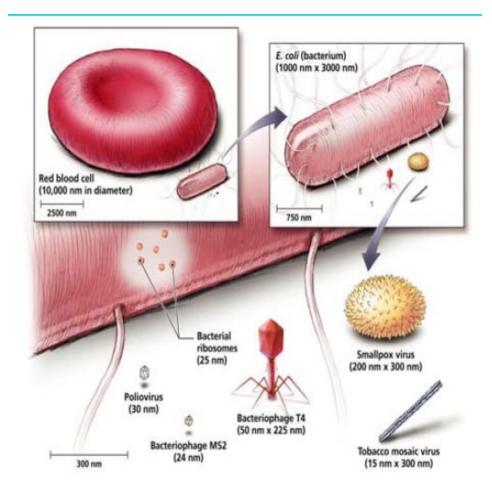

## **London----- Population, Density**


| 1841 | 2,207,653 | 3,551 |
|------|-----------|-------|
| 1851 | 2,651,939 | 4,266 |
| 1861 | 3,188,485 | 5,129 |
| 1871 | 3,840,595 | 6,178 |




- ■John Snow
- **■**Miasama
- ■Broad Street Pump








https://www.britannica.com/technology/wastewater-treatment









**Urban Centres identified as Engines for Growth.** 

Effect of poor/ inadequate sanitation- 6-8 % GDP





# Hon'ble Supreme Court Order on UWM

Separate orders dated 28.8.2019, 12.9.2019, 6.12.2019 and 22.02.2021 on the subject of Liquid Waste Management

23. Issue of liquid waste management was separately dealt with in OA 593/2017 on directions of Hon'ble Supreme Court and in suo motu proceedings for restoration of 351 identified polluted river stretches in OA

673/2018. Vide order dated 28.08.2019, the Tribunal directed that 100%

sewage treatment must be ensured by all local bodies. Vide further order

dated 06.12.2019 in O.A. No. 673/2018<sup>7</sup>, the Tribunal directed that for failure to commence in-situ remediation, compensation will be payable at the rate of Rs. 5 lakh per month per drain after 31.03.2020 and for failure to commence setting up of STPs after 31.03.2020 compensation is to be

paid at the rate of Rs. 5 lakh per month per STP. For failure to complete

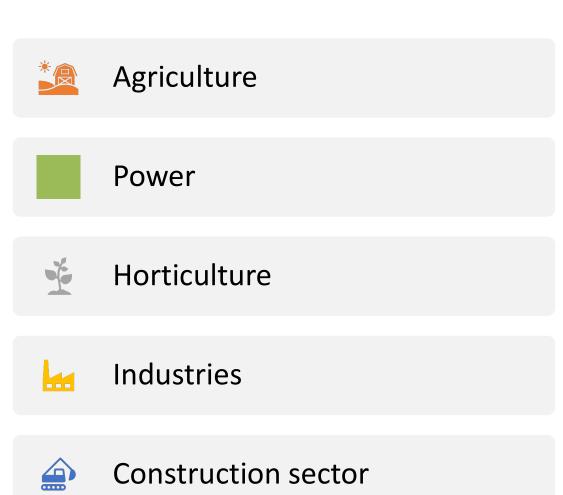
the project, compensation has to be paid at the rate of Rs. 10 lakh per STP

per month after 31.03.2021. Relevant part of the order is quoted below:

100 % sewage treatment must be ensured

Heavy Penalties for Non-compliance

# Only Treated Wastewater has Potential for Reuse & Recycle


#### **How Much?**

1 Lakh Population Town100 lpcd1 Crore litre per day

#### **Potential Revenue-**

@Rs 0.05 per litre

Rs 18 Cr per Year



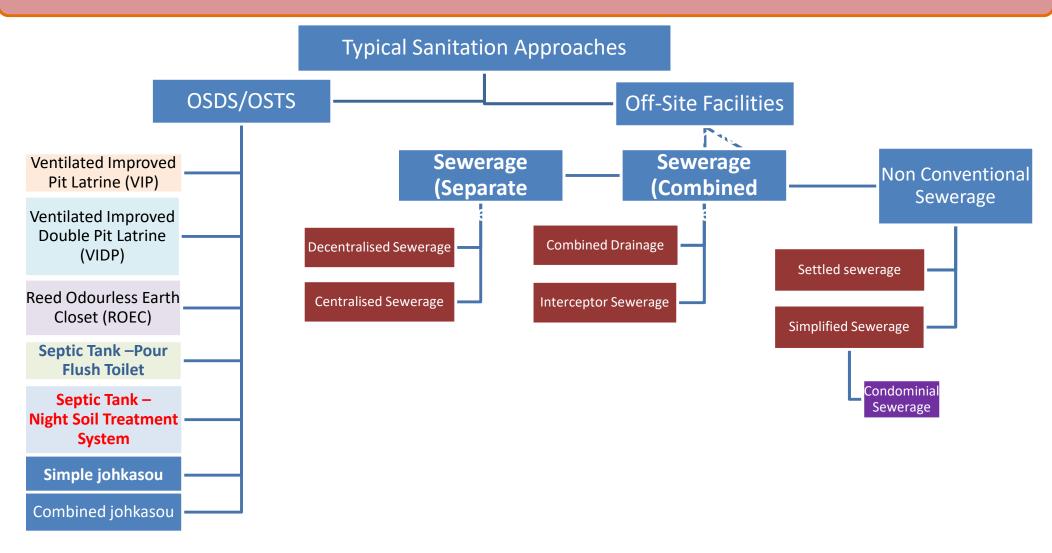


# **Treatment of Municipal Wastewater**

## **Why**

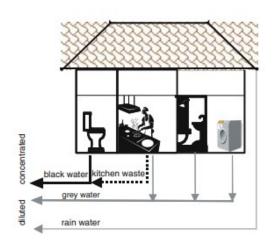
- Disease Control
- Appearance and Odour
- Make fit for Reuse
- Meet Regulations

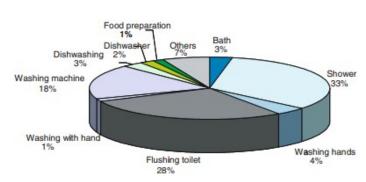
# **What**


Removal of Impurities by Physical, Chemical and Bio-Chemical Means

Mutual interference

Sequence of removal


Solids → BOD/ Chem → Pathogens


# **Sanitation- Approaches**



# **Collection**









# **Components -(Dry Months)**

- **□**Domestic or institutional Sewage
- □ Commercial Effluent- Hotels, eataries, dairy, butchery etc
- □Industrial Effluent- Ideally Nil (ZLD regime) with CETPs but unorganised industry- leather tanning, auto repair etc.

# Onsite- Septic Tank Systems and Alternatives



#### **Engineered Passive System**

#### Step-1

#### **Septic Tank-**

A tank, typically underground, in which sewage is collected and **heavier pollutants** are allowed to settle and anaerobically **decompose** slowly through bacterial activity

#### Step-2

#### **Soak Pit-**

A covered, porous- walled chamber that allows water to slowly soak into the ground through a Filtration Zone.

Filtration and Biological treatment of **lighter and** dissolved pollutants occurs in Bio-mat

#### Onsite Sanitation however comes with understanding that -

- a) The Soil shall absorb the effluent after pretreatment in the Septic tank
- b) The density of discharging premises and hence the volume of discharge is reasonable
- c) The discharged water is not available for direct reuse (of course aquifer is recharged)

#### 9.1 OVERVIEW OF ON-SITE SANITATION

The areas that are not served by piped sewer systems can adopt on-site systems. The treatment can be either on-site or off-site like in the case of **septage management**.

These are **interim measures** till a decentralised or a full sewerage system is implemented.



#### MANUAL ON SEWERAGE AND SEWAGE TREATMENT SYSTEMS

PART A: ENGINEERING
THIRD EDITION - REVISED AND UPDATED

MINISTRY OF URBAN DEVELOPMENT, NEW DELHI http://moud.gov.in

CENTRAL PUBLIC HEALTH AND ENVIRONMENTAL ENGINEERING ORGANIZATION

IN COLLABORATION WITH



JAPAN INTERNATIONAL COOPERATION AGENCY
NOVEMBER 2013

#### IS 2470 - Part 1

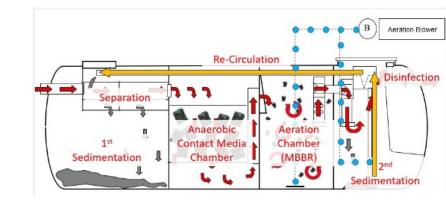
- **2.4 Septic Tank** A water-tight single storeyed tank in which sewage is retained sufficiently long to permit sedimentation.
- **2.5 Sewage** The liquid waste of a household or community including human excreta.
- 2.6 Sludge Sludge is the settled solid matter in **semi-solid** condition.
- **2.11** Sullage -- The discharge from wash basins, sinks and similar appliances, which does not contain human excreta.
- 3.1.3 <u>Under no circumstances should effluent from a septic tank be allowed into an open channel drain</u> or body of water without adequate treatment.

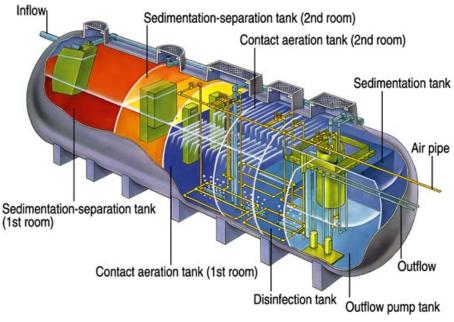
#### **Johkasou**



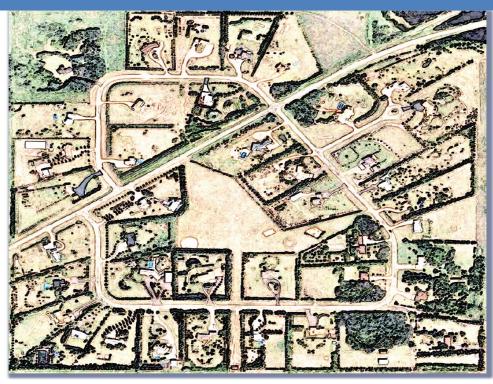
✓ Complete Treatment Plant 1

incl chlorine disinfection and Education Center of Environmental Sanitation


#### For Both Grey and Black Water


Costly

Requires Power to operate

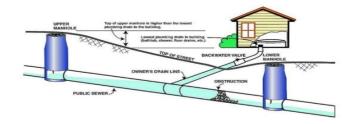

#### Price in Japan @200 lpcd

- ☐ Catalog Price- 6,000~12,000 USD
- □Constr Cost (Incl Johkasou) 7,500~12,500 USD
- □O&M cost a year 500~900 dollars

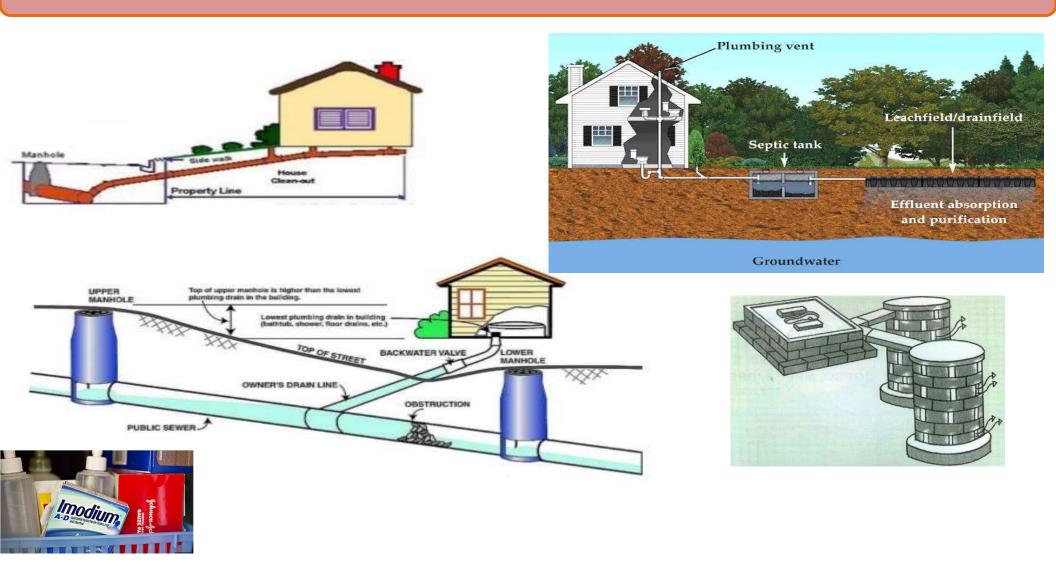




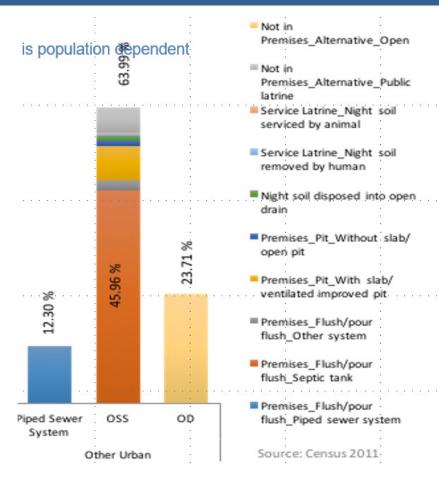
# **Sanitation Through Sewerage**




#### **Sewers and Pumping Stations (Conveyance Network)**

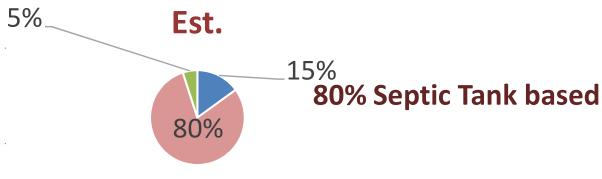

- ✓ Collects all used water (Grey+ Back)
- ✓ Conveys safely to a treatment facility
- ✓ Treats to desired Level
- ✓ Economy of Scale








# SAFE WASTEWATER MANAGEMENT OPTIONS




# Status of Used Water Management in Towns with Population <100,000

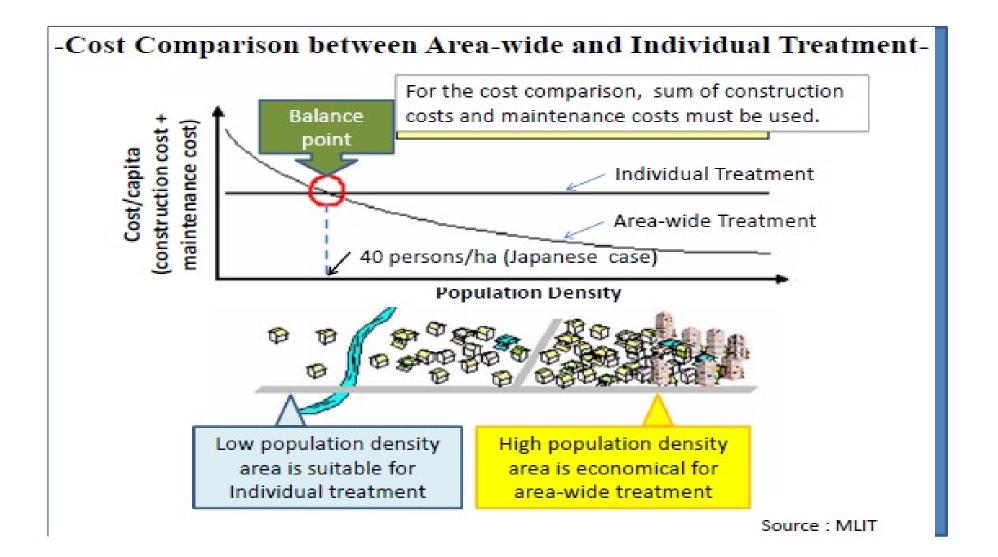


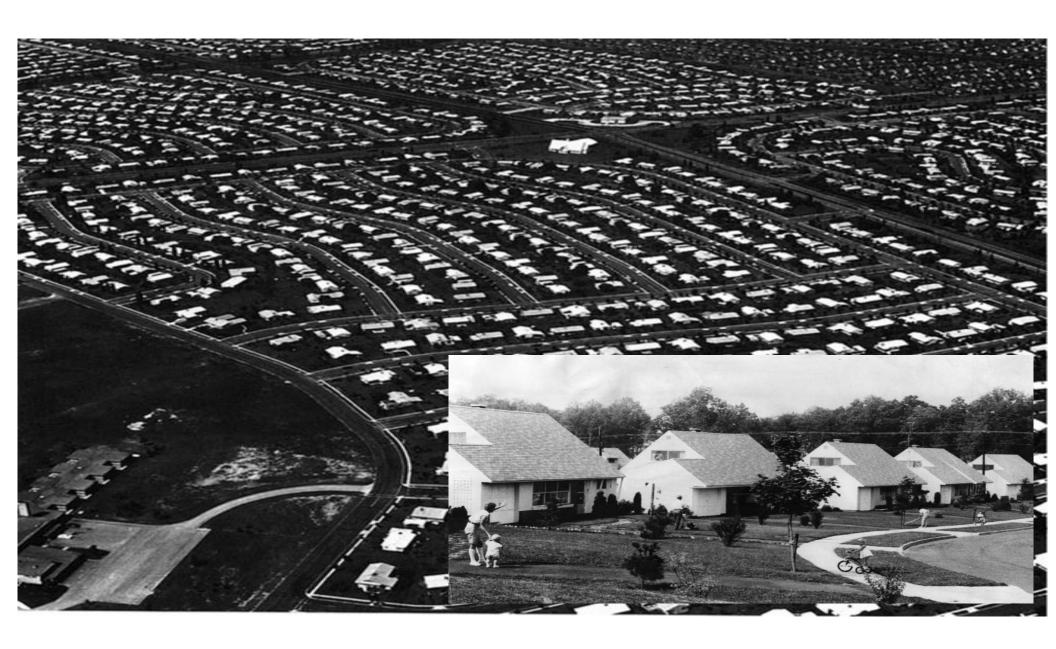


Sewered



Septic\*


|               | UAs+Towns | Area        | Population   |       |
|---------------|-----------|-------------|--------------|-------|
|               |           | (Sq Km)     | (2011)       |       |
| All Towns and | 474+5697  | 1,02,252.00 | 37,71,06,125 |       |
| UAs           |           |             |              |       |
| Class 1-      | 298+170   | 45,662.85   | 26,47,45,519 | 63/28 |
| Class II-     | 100+374   | 9,693.17    | 3,21,79,677  | 16%   |
| Class III     | 75+1298   | 19,774.45   | 4,18,33,295  | 12%   |
| Class-IV      | 1+1682    | 15,690.27   | 2,40,12,860  | 9%    |
| Class-V       | 1749      | 9.688.14    | 1.26.56.749  |       |


# Wastewater Collection- Coverage in Developed/ Progressive Nations

| 1                       | Dataset: Wastewater treatment (% population connected) |     |           |     |     |     |             |     |        |          |       |     |       |     |      |      |       |     |      |     |        |        |       |                   |                   |     |     |      |
|-------------------------|--------------------------------------------------------|-----|-----------|-----|-----|-----|-------------|-----|--------|----------|-------|-----|-------|-----|------|------|-------|-----|------|-----|--------|--------|-------|-------------------|-------------------|-----|-----|------|
|                         |                                                        |     |           |     |     | ewe | rage        | (%  | of res | side     | nt pc | pul | ation | cor | nect | ed t | o urt | oan | wast | ewa | iter c | olle   | cting | system            | = PUBTC           | OTT | र + |      |
|                         |                                                        |     | cen<br>70 |     |     | 1 1 | 990         | 21  | 000    | <u> </u> | 005   | 20  | 010   | 21  | 011  | 20   | 012   | 21  | 013  | 21  | 014    | 2      | 015   | 2016              | 2017              | 1 2 | 018 | 2019 |
| Country                 | aı                                                     | 1.2 | 70        |     | 760 |     | <i>33</i> 0 |     |        |          | 003   | 2   | J10   |     |      | 20   | JIZ   |     | 013  |     | 014    |        | 013   | 2010              | 2017              |     | 010 | 2019 |
| <u>Australia</u>        |                                                        |     |           |     | l   |     | l           |     |        |          | ١     |     | 93    |     | 94   |      | 94    |     | 94   |     | 93     |        | 92    | <sup>(E)</sup> 92 | 93                |     | 93  | 93   |
| <u>Austria</u>          |                                                        |     |           |     |     |     | 100         |     | 100    |          |       |     | 94    |     |      |      | 95    |     |      |     | 95     |        | İ     | 95                |                   |     | 100 | 100  |
| <u>Belgium</u>          |                                                        |     |           |     |     |     |             |     | 65     |          | 74    |     | 96    |     | 97   |      | 93    |     | 94   |     | 95     |        | 95    | 97                | 97                |     | 98  | 98   |
| <u>Canada</u>           |                                                        |     |           |     |     |     |             |     |        |          |       |     |       |     |      |      |       |     | 86   |     | 86     |        | 86    | 86                | 86                |     |     |      |
| <u>Chile</u>            |                                                        |     |           |     |     |     |             |     | 93     | (E)      | 95    |     | 96    |     | 96   |      | 100   |     | 100  |     | 100    |        | 100   | 100               | 100               |     |     |      |
| Czech Republic          |                                                        |     |           |     |     |     |             | (E) | 66     |          | 75    |     | 79    |     | 81   | (E)  | 78    | (E) | 80   |     | 80     |        | 81    | 81                | 82                |     | 82  | 83   |
| <u>Denmark</u>          |                                                        |     |           |     |     |     |             |     | 100    |          |       |     | 100   |     | 100  |      | 100   |     | 100  |     | 100    |        | 100   | 100               | 100               |     | 100 | 100  |
| <u>Estonia</u>          |                                                        |     |           |     |     |     |             | (E) | 70     |          | 79    |     | 87    |     | 87   |      | 87    | (E) | 87   | (E) | 87     |        | 88    | 88                | 88                |     |     |      |
| <u>Finland</u>          |                                                        |     |           |     |     |     |             |     | 100    |          |       |     | 100   |     | 100  |      | 100   |     | 100  |     | 100    |        | i     |                   |                   |     | 100 | 100  |
| <u>France</u>           |                                                        |     |           |     |     |     |             |     |        |          |       |     | 82    |     | 82   |      | 82    |     | 82   |     | 80     |        | 82    | 82                | 82                |     | 81  |      |
| Germany                 |                                                        |     |           |     |     |     |             |     |        |          | 97    |     | 96    | (E) | 96   | (E)  | 96    |     | 96   | (E) | 97     | (E)    | 97    | 97                |                   |     |     |      |
| Greece                  |                                                        |     |           |     |     |     |             |     | 85     |          | 91    |     | 87    |     | 88   |      | 92    |     | 93   |     | 93     |        | 93    | 93                | 95                |     | 95  |      |
| Hungary                 |                                                        | (E) | 21        | (E) | 36  | (E) | 39          | (E) | 64     |          | 61    |     | 72    |     | 72   | (E)  | 73    | (E) | 73   | (E) | 74     | (E)    | 77    | <sup>(E)</sup> 78 | <sup>(E)</sup> 79 | (E) | 80  | 80   |
| Iceland                 |                                                        |     |           |     |     |     | 6           |     |        |          | i     |     |       |     |      |      |       |     |      |     |        |        | Ì     |                   |                   |     |     |      |
| <u>Ireland</u>          |                                                        |     |           |     |     |     |             |     |        |          | 83    |     |       | (E) | 97   | (E)  | 93    | (E) | 93   | (E) | 93     | (E)    | 94    | 94                | <sup>(E)</sup> 94 |     |     |      |
| <u>Israel</u>           |                                                        |     |           | (E) | 81  | (E) | 89          | (E) | 94     | (E)      | 97    | (E) | 98    | (E) | 98   |      | 99    |     | 99   |     | 99     |        | 99    | 99                | 99                |     | 99  | 99   |
| <u>Japan</u>            |                                                        |     |           |     | 30  |     | 44          |     | 62     |          | 69    |     | 75    |     | 76   |      | 76    |     | 77   |     | 78     |        | 78    | 78                | 79                |     | 79  | 80   |
| Korea                   |                                                        |     |           |     | 8   | (E) | 33          | (E) | 71     | (E)      | 84    | (E) | 90    |     | 91   |      | 92    |     | 92   |     | 93     |        | 93    | 93                | 94                |     | 94  | 94   |
| Latvia                  |                                                        |     |           |     |     |     |             |     | 100    |          | 100   |     | 100   |     | 100  |      | 100   |     | 100  |     | 100    |        | 100   | 100               | 100               |     | 100 | 100  |
| Lithuania               |                                                        |     |           |     |     |     |             |     |        |          |       |     | 72    |     | 73   |      | 74    |     | 74   |     | 75     |        | 77    | 77                | 78                |     | 79  | 79   |
| Luxembourg              |                                                        |     |           |     |     |     |             |     |        |          |       |     | 99    |     | 100  |      | 100   |     | 100  |     | 99     |        | 99    | 99                |                   |     |     |      |
| Mexico                  |                                                        |     |           |     |     |     | 50          | (E) | 59     | (E)      | 68    | (E) | 71    |     |      |      |       |     |      |     |        |        | ļ     |                   |                   |     |     |      |
| <u>Netherlands</u>      |                                                        |     |           |     |     |     | 98          |     | 100    |          | 100   |     | 100   |     | 100  |      | 100   |     | 100  |     | 100    |        | 100   | 100               | 100               |     | 100 | 100  |
| Norway                  |                                                        |     |           |     |     |     | 80          |     | 94     |          | 96    |     | 98    |     | 98   |      | 99    |     | 98   |     | 98     |        | 99    | 100               | 99                |     | 100 | 100  |
| Poland                  |                                                        |     |           |     |     |     | 72          |     | 54     | (E)      | 86    | (E) | 90    |     | 91   |      | 94    |     | 95   |     | 94     |        | 94    | 95                | 95                |     | 96  | 96   |
| <u>Portugal</u>         |                                                        |     |           |     |     |     |             |     |        |          | 79    |     |       |     |      |      |       |     |      |     |        |        |       |                   | 86                |     |     |      |
| Slovak Republic         |                                                        |     |           |     |     |     |             |     |        |          |       |     |       |     |      |      |       |     |      |     |        |        |       | 89                | 89                |     | 90  |      |
| Slovenia                |                                                        |     |           |     |     |     |             |     | 71     |          | 85    |     | 87    |     | 90   |      | 89    |     | 90   |     | 91     |        | 92    | 92                | 96                |     | 97  | 97   |
| Spain                   |                                                        |     |           |     |     |     |             |     |        |          |       |     | 98    |     |      |      | 90    |     |      |     | 87     |        |       | 89                |                   |     | 89  |      |
| <u>Sweden</u>           |                                                        |     |           |     |     |     | 86          |     |        |          | 86    |     | 86    |     | 86   |      | 87    |     | 87   |     | 87     |        | 87    | 87                | 87                |     |     |      |
| <u>Switzerland</u>      |                                                        |     |           |     |     |     |             |     | 98     | (E)      | 99    | (E) | 100   |     |      |      |       | (E) | 100  |     |        |        |       |                   |                   |     |     |      |
| Turkey                  |                                                        |     |           |     |     |     |             |     | 26     |          | 42    |     | 52    |     |      |      | 58    |     |      |     | 64     |        | 70    | 71                | 74                |     | 74  |      |
| <u>United Kingdom</u>   |                                                        |     |           |     |     |     |             | (E) | 98     | (E)      | 100   |     | 100   |     |      |      |       |     |      |     |        |        | ļ     |                   |                   |     |     |      |
| <u>United</u> England & |                                                        |     |           |     |     |     |             |     |        |          |       |     |       |     |      |      |       |     |      |     |        |        |       |                   |                   |     |     |      |
| Kingdom Wales           |                                                        | -   |           | -   |     | -   |             | (E) |        | _        | 99    | _   |       | _   |      |      |       |     |      |     |        | _      |       |                   |                   | -   |     |      |
| United States           |                                                        |     |           |     |     |     |             | `-' | 75     |          |       |     |       |     |      |      | 76    |     |      |     |        | $\Box$ |       |                   |                   |     |     |      |

Data extracted on 16 Jul 2021 05:09 UTC (GMT) from OECD.Stat Legend:

E: Estimated value





# Septic Systems Failure in USA

- One of the main causes of ground water contamination in the United States is the effluent (outflow) from septic tanks, cesspools, and privies.
- Although each individual system releases a relatively small amount of waste into the ground, the large number and widespread use of these systems makes them a serious contamination source.
- Septic systems that are improperly sited, designed, constructed, or maintained can contaminate ground water with bacteria, viruses, nitrates, detergents, oils, and chemicals.
- Most, if not all, state and local regulations require specific separation distances between septic systems and drinking water wells.

Regulation permits only 2.0-5.0 Acre lots for OSDS in California

# <u>Japan</u> – Economic inflexion point-

#### 40 person per Hectare

#### **USA-** Environmental Inflexion point-

- Almost one-third of all homes in the United States dispose of domestic wastes through individual on-site sewage disposal systems (OSDS). (Mostly Rural)
- Septic tank-Soil absorption systems represent about eighty-five percent of all individual disposal units (Scalf et al., 1977).
- EPA defines 40 septic systems per sq mile (16 STS/Sq KM) as high density

#### = 80 pers/ Sq KM

- US permits single family OSDS in a **property of size** 0.4 Acre (1600 Sq m) or higher
- More than one half of the soils in the United States are declared unsuited for conventional OSDSs.
  (Source US EPA-2002)

# Off Site Systems- Sewerage

# **General Concerns/ Myths**

"Wastes" Precious Water

"Expensive" to Execute

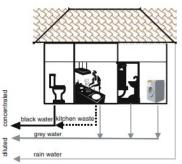
"Inconvenient" to Public in Retrofitting=

---- Political Will

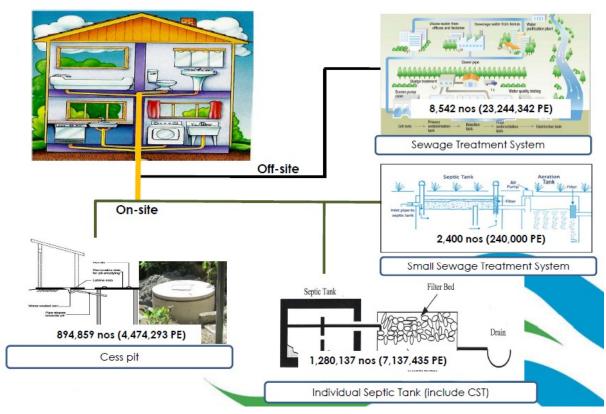


#### Claim-

#### Water is "Wasted" to make Excreta flow in Sewers


- Water used for Excreta Disposal (Black Water) is just 25% while other uses incl Grey water is 75%
- ☐ Sewerage has potential to bring all water back after treatment for Reuse

#### **Expensive to Execute and Maintain**


**Debatable- compared to what?** 

- Bridge over Brahmapura vs Boats
- Public Transport (Bus) vs tonga service to distt market town





#### SEWERAGE SYSTEMS PROFILE IN MALAYSIA







# Malaysia-

Area- 329647 Sq Km
Population- 3.2 Crore
Urban- 2.44 Crore
Mn Plus Cities- 2
Lakh Plus- 35
10000 Plus-

115

| Туре               | Population<br>Served | %     |
|--------------------|----------------------|-------|
| STPs and<br>Sewers | 2.324 Cr             | 66.36 |
| Small STPs         | 0.024 Cr             | 00.68 |
| Septic Tanks       | 0.714 Cr             | 20.39 |
| Cess Pits          | 0.447 Cr             | 12.76 |

**Note-** This includes Rural Population

Centralised-82 Units/ 6.39 Mn Decen-8,847 Units/17.84 Mn

# Malaysian Sewerage Industry Guidelines, Volume 5 -Septic Tanks MS 1228:1991 Code of Practice for Design and Installation of Sewerage Systems

| 2.4.2 Single Development Over 30 Units (150 PE) in Total with Average Housing Density Greater     |
|---------------------------------------------------------------------------------------------------|
| Γhan Five Units per Hectare                                                                       |
| ☐ For single development over 30 units in total with an average housing density greate            |
| than 25 persons per hectare, a sewer reticulation and a treatment plant must be provided.         |
| Sewer reticulation must be appropriately designed to achieve acceptable hydrauli                  |
|                                                                                                   |
| conditions within topographic and routing parameters.                                             |
|                                                                                                   |
| 2.4.3 Single Development Over 30 Units in Total with Average Housing Density Less Than Five Units |
| per Hectare                                                                                       |
| For single development over 30 units in total and with an average housing density of less         |
| than 25 persons per hectare, a sewer reticulation and a treatment plant is preferred.             |
| ☐ Where the terrain of the development is such that installation of an approved treatment         |
| system mandating the construction of <b>excessive numbers</b> of intermediate pump stations;      |
| individual treatment facilities may be considered, subject to the following conditions:           |
| ,                                                                                                 |
| The individual system must be a system approved by the Commission.                                |
| Where the ground conditions permit, soakaway trenches must be used for disposal of the final      |
| effluent from the treatment systems.                                                              |

## **Sewerage System Profile- Turkey**



Total number of municipalities (Urban and Rural) - 1389

Total Municipal Population - 7.9 Cr

Municipalities served by Sewer System - 1362

**Population Served by Sewers** 

No of Wastewater Treatment Plants-

Municipalities Served by WWTPs

Treatment Capacity/WW Discharged/Treated

**Total Municipal Population served by WWTPs-**

Amount of wastewater discharged per capita

Turkey-

Area – 783562 Sq Km Population- 8.36 Crore

Urban- 6.42 Crore

Mn Plus Cities- 6 Lakh Plus- 76

10000 Plus- 427

- 7.19 Cr (91%)

-1068

- 711

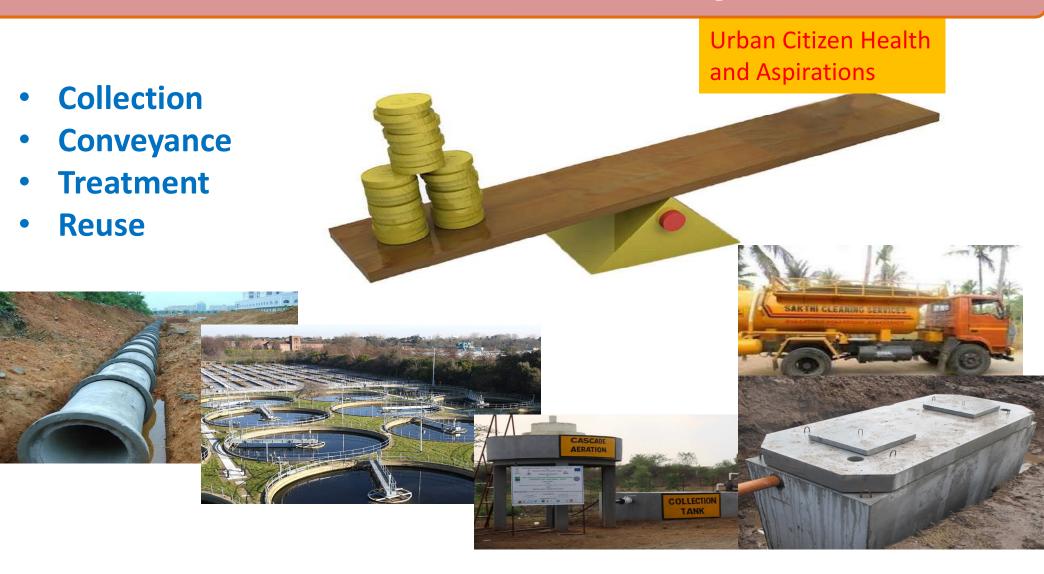
- 17500/13588/11940 I

- 6.12 Cr (78%)

- 189 liters/capita-day



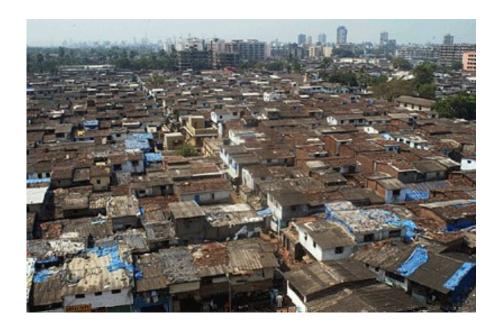



# **Pros and Cons of ON-site and OFF-site treatment systems**

Advantages

Disadvantages

| OFF-Site | <ul> <li>Controlled Treatment System – easy to maintain</li> <li>Complete solution for Black Water and Grey Water</li> <li>Less Operation &amp; Maintenance</li> <li>Reduces the cost of Septic Tanks over the House holds</li> </ul> | <ul> <li>Discomfort to the people while implementing</li> <li>Comparatively, Longer Implementation time</li> <li>Required skilled manpower for sewer laying</li> <li>Laying of sewer is cost intensive project</li> </ul>                                                                                    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Advantages                                                                                                                                                                                                                            | Disadvantages                                                                                                                                                                                                                                                                                                |
| ON-Site  | <ul> <li>Comparatively, less cost intensive to<br/>Municipality</li> <li>Wastewater can be managed at<br/>HH/community level</li> <li>Less Operation &amp; Maintenance cost</li> </ul>                                                | <ul> <li>Only deals with Black water, incomplete solution</li> <li>Difficult to monitor and manage</li> <li>Systems need to desludged periodically</li> <li>Chances of spreading septage in open areas</li> <li>System Management is complex in nature related to soil strata, GWL, permeability.</li> </ul> |


# **Elements of Cost in Wastewater Management**



## **Observed situation in Smaller Indian ULBs**



- Mixed Coverage pattern in growing towns
- Sewerage cover is extremely limited
- Septic tank discharge released into surface drains
- Grey water directly released into surface drains
- Multi-source pollution and garbage in drains
- Drains Outfalling untreated in water bodies
- Proliferation of STPs- SBM/ AMRUT requirement







# SBM-U 2.0 Guidelines: Chapter-7- Used Water Management





# Targets under SBM 2.0 (UWM)

No usedwater disposal in water bodies without treatment

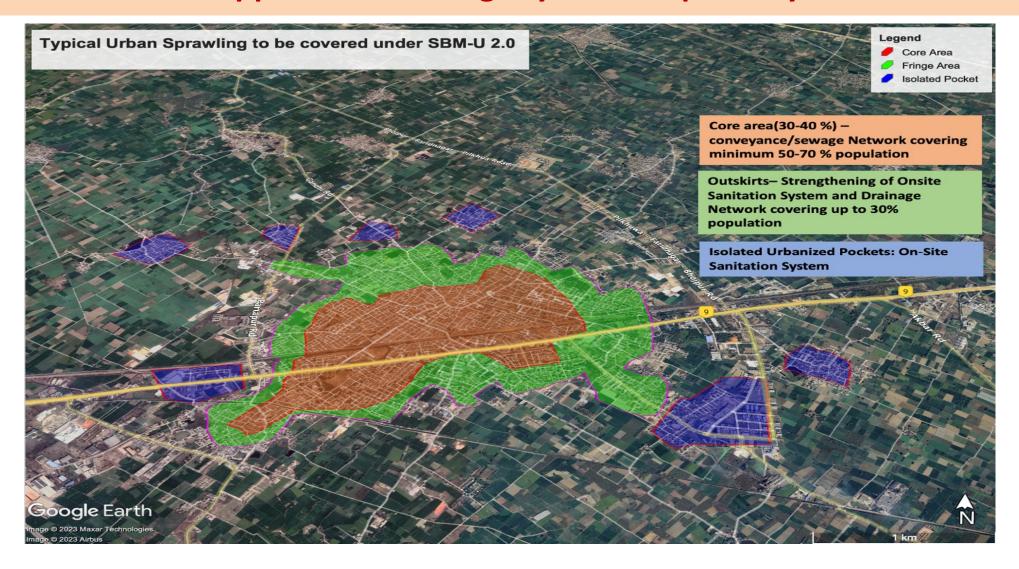
50% town water+

All town ODF++





### Salient Characteristics of Smaller Indian Towns


- Organic Growth- No major out growths
- Density (1000-4000 per Sq KM)
- Vacant plots
- Low Rise
- Ribbon Development along arterial roads
- Small pockets of high congestion.



#### **Conventional Approach: Sewerage system for entire town**



#### Incremental Approach: Sewerage system for partially covered town



#### **Advised Concept for Used Water Management Under SBM 2.0**

| De | esign Philosophy                                                                                           |
|----|------------------------------------------------------------------------------------------------------------|
|    | Provide Sewage Treatment Plant (STP) designed for Current and Not the Future population                    |
|    | Connect Maximum Premises in Denser (Core) Areas of the Town through a Sewer Network                        |
|    | Minimise the Trunk Sewer Length- Locate STP at as close as possible                                        |
|    | Connect Outfalls of Major Drains leading to any water body/marsh to an Interceptor sewer/Drain             |
|    | Flow from Intercepted drains diverted to STP                                                               |
|    | Improve conveyance capacity and quality of discharge in surface drains                                     |
|    | Improve discharge quality from Unsewered Houses(Fringe Area)- Provide Soak aways                           |
|    | Septage Management from Unsewered Houses(Fringe Area)- at STP(Co-treatment)                                |
|    | In Future, identify other maturing areas to provide sewerage — <b>Decentralised + Incremental Approach</b> |

#### **Concept of Core Sanitation Zone**

| ☐ Identify and Delineate a <b>Core Sanitation Zone (CSZ)</b> in the town which caters for 70% of Population residing in 30% of Area                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ☐ This Zone is not regular in shape or follows any defined ward boundary.                                                                                                            |
| ☐ Identify HHs based on Septic Tanks within CSZ which are still possible to connect into sewerage with reasonable effort/retrofit pain (Say 70% of population of CSZ or 50% overall) |
| ☐ Set up an STP sized for about 80-100% of current population need                                                                                                                   |
| ☐ Arrange to execute sewer network to connect 50% of current HH from within CSZ in the period of the SBM 2.0 (The exercise may continue beyond the mission).                         |

#### **Concept of Core Sanitation Zone (Contd...)**

- ☐ In areas outside CSZ, the ULB will strive to
  - a) enforce FSM (FSM also extends to the excluded dwellings within CSZ.
  - b) provide Soak pits in premises where missing, OR set up community level soak pits
  - c) repair the surface drains carrying grey/ mixed water.
  - d) Provide an I&D drain system to collect and carry at least 50% of DWF to the STP
  - e) All Faecal Septage to be transported to the STP for co-processing

#### **Future Development**

As town develops and number of houses in any fringe zone exceeds a threshhold, a secondary Sanitation Zone (SSZ) is identified and similar network and STP extended here ( **Decentralisation with Time**)

## Per Capita Sewer Length in Major Cities in India

| ULB                 | Population | Sewer<br>Coverage (%) | >900 mm<br>dia (m) | 600- 899 mm<br>dia (m) | 300-599 mm<br>dia (m) | <300 mm<br>dia (m) | Total Sewer<br>Length (KM) | Sewer length<br>per Capita<br>(m) |
|---------------------|------------|-----------------------|--------------------|------------------------|-----------------------|--------------------|----------------------------|-----------------------------------|
| Indore              | 2939406    | 99                    | 52312              | 45731                  | 337984                | 1688973            | 2125.0                     | 0.723                             |
| Bhopal              | 2238202    | 56.74                 | 3900               | 7230                   | 141000                | 633000             | 785.1                      | 0.351                             |
| Surat               | 5823040    | 99                    | 726120             | 87153                  | 314824                | 1165964            | 2294.1                     | 0.394                             |
| Thane               | 2703574    | 97                    | 29100              | 52380                  | 64020                 | 145500             | 291.0                      | 0.108                             |
| Pimpri<br>Chinchwad | 2403860    | 98                    | 25500              | 89535                  | 1078515               | 867680             | 2061.2                     | 0.857                             |
| Greater<br>Mumbai   | 15470527   | 98                    | 142938             | 109364                 | 319523                | 1451752            | 2023.6                     | 0.131                             |
| Gvmc                | 2242239    | 40                    | 345024             | 211236                 | 100227                | 124513             | 781.0                      | 0.348                             |
| Ahmedabad           | 7751405    | 100                   | 156000             | 71000                  | 1475000               | 1600000            | 3302.0                     | 0.426                             |
| Pune                | 4294225    | 100                   | 65718              | 88889                  | 475933                | 1492688            | 2123.2                     | 0.494                             |
| Nagpur              | 3043221    | 70                    | 167000             | 250500                 | 334000                | 918500             | 1670.0                     | 0.549                             |
| Lucknow             | 3453930    | 60                    | 47500              | 78000                  | 187200                | 468000             | 780.7                      | 0.226                             |
| Rajkot              | 2137402    | 100                   | 27500              | 180010                 | 86420                 | 2312170            | 2606.1                     | 1.219                             |
| Vadodara            | 2677564    | 80                    | 214200             | 314160                 | 528360                | 371280             | 1428.0                     | 0.533                             |

#### **Key Advantages of Core Sanitation Zone Concept**

| Saves Cost to Municipal Body                                                             |
|------------------------------------------------------------------------------------------|
| ☐ The excessive cost of laying sewers is avoided in less densely populated, fringe areas |
| ☐ Network and sewage treatment is delayed (Concept of Just-in-Time Investment) in        |
| these areas                                                                              |
| ☐ Supports concept of Decentralisation                                                   |
| Saves Effort and Time for laying Sewers and Inconvenience to general Public              |
| ☐ Congested HH/ groups in the Core area are not linked to sewerage and thus the extra    |
| effort and inconvenience is avoided.                                                     |
| Cost Effective for new/ future HHs                                                       |
| ☐ Future Premises to come up in the Core Zone (in left over patches) do not have to      |
| arrange own septic systems in future @ about Rs 25-40,000/-                              |

**Mitigates Environmental Pollution** 

**Enables treatment of maximum used water and its Reuse** 

#### **SBM 2.0 : Eligible components for funding**

#### **Eligible components for Central Share**

- 1. Sewage treatment plant with facility to cotreat septage
- 2. Interception & Diversion
- 3. De-sludging vehicles

# Components to be funded through 15th FC/ State/ ULB/ Private Sector

- 1. Construction of sewer networks
- 2. Strengthening of Municipal drains
- 3. Diversion of used water to nearby sewer network

### Typical town sewage outfall



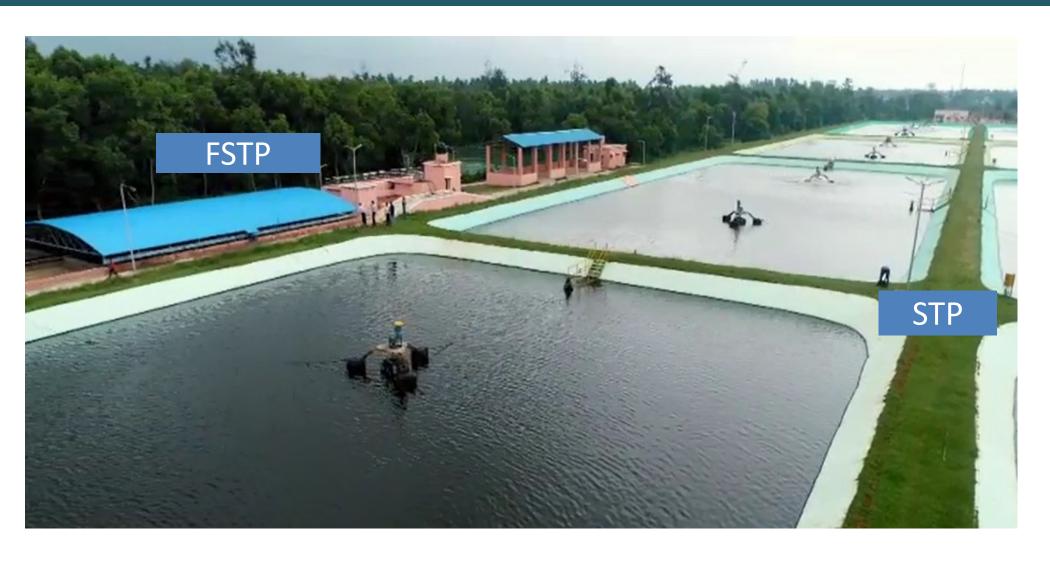


# Typical drains carrying Sullage










Drains of Delhi and Ghaziabad

### Interception and Diversion (I&D) of Drains



# FSM Facility integrated with STP

